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ABSTRACT 

A new use of nuclear magnetic resonance (NMR) has emerged in the field of 

biological samples: NMR-based metabolomics. This technique expands the 

traditional use of NMR for molecular structure elucidation. But NMR is just as 

useful in other fields of small molecule biology. Some examples of these methods 

include quantitative nuclear magnetic resonance (qNMR) for metabolite 

quantification, stable isotope tracers for drug or nutrient metabolic fate 

determination, metabolic pathway unraveling and flux analysis, and metabolite-

protein interactions for pharmacological effect and regulation understanding. 

Computational resources and technologies for automating biochemical information 

extraction from spectra have evolved in parallel, adding depth to our knowledge of 

systems biochemistry. Saliva, urine, and perspiration have been utilized for 

medical diagnosis since ancient times. Many conventional medical procedures still 

rely on the volume, color, and odor of bodily fluids to assess health and diagnose 

disease. Biomarkers for many diseases have been found thanks to analytical 

methods that allow for the thorough examination of bodily fluids. A recent 

interdisciplinary effort has integrated multivariate statistical methods, nuclear 

magnetic resonance spectroscopy (NMR), and mass spectrometry (MS) to profile 

alterations in small molecules linked to the development and advancement of 

human diseases. By analyzing the current and future directions of NMR 

spectroscopy, this study emphasizes the role of NMR in metabolic studies and 

small molecule biochemistry more generally. 
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Introduction: 

The spectroscopic method known as Nuclear Magnetic 

Resonance (NMR) makes use of the energetic transition 

of nuclear spins when a powerful magnetic field is 

applied. In the decades following the publication of the 

first nuclear magnetic resonance (NMR) spectrum in the 

1940s, NMR has expanded into a wide variety of 

analytical chemical applications[1, 2]. The use of nuclear 

magnetic resonance (NMR) has become increasingly 

important in the life sciences, particularly in the areas of 

metabolomics, macromolecule dynamics (including 

proteins and nucleic acids), and organic molecular 

identification and structure elucidation (particularly 

metabolites) [3, 4].  

Nuclear magnetic resonance (NMR) spectroscopy 

provides selected chemical information on molecules in 

their physiological environment due to its sensitivity to 

chemical environments.  Metabolic research has a long 

tradition of using NMR. Nucleotide and sugar 

phosphates, as well as redox species, are phosphorus-

containing metabolites that were initially studied in cells 

and tissues using 31 P NMR [5]. By the end of the 

1970s, scientists were hopeful about the prospect of 

using nuclear magnetic resonance (NMR) to learn more 

about metabolites in living organisms than they had been 

able to learn about isolated biomolecules in solution in 

terms of their structure, mobility, reaction rates, and 

binding sites [6, 7]. Researchers are still delving into 

several of these areas with NMR techniques. 

Medical, nutritional, toxicological, ecological, and 

pharmacological disciplines were among the many that 

made extensive use of radioactive tracers as the de facto 

method for investigating the metabolic fate of 

compounds in living systems. With the introduction of 

labelled supply and improved detection procedures, 

radioactive isotopes have been gradually substituted by 

safe stable isotope tracers [8]. The utilization of stable 

isotope resolved metabolomics (SIRM) has allowed for 

the determination of absolute metabolic fluxes and the 

activation states of several metabolic processes across 

numerous metabolic pathways [9]. When analyzing 

labeling studies, mass spectrometry (MS) and nuclear 

magnetic resonance (NMR) are the methods of choice 

(Lane et al., 2019). One obvious benefit of nuclear 

magnetic resonance (NMR) in metabolite data 

deposition is the positional labelling information it can 

provide.  

Technological advancements have ushered in a new age 

of biological mixture analyses, known as metabolomics.  

 

The measurement of metabolites is now widely believed 

to be accurate. A renewed focus on metabolic research 

has emerged in the last decade, spurred driven by both 

technical developments and the critical public need for 

knowledge of metabolic illnesses. In the end, 

metabolism is involved in every part of biology [10]. 

Although mass spectrometry (MS) has been the method 

of choice for metabolic and metabolomics research 

because to its sensitivity and extensive coverage, nuclear 

magnetic resonance (NMR) is still employed by only a 

minority of researchers. Several benefits are gathered via 

NMR [10]. The reliability of nuclear magnetic resonance 

(NMR) measurements is excellent; for example, results 

may be reliably reproduced between labs (Ward et al., 

2010), and, with proper sample storage, instrumental 

response stability can last for months or even years. 

There is no need to clean the instrument between 

samples in standard NMR experiments because the 

samples are in tubes and no chromatographic procedures 

are utilized.  

Users with different applications can freely share NMR 

spectrometers without worrying about contamination or 

carry-over. The quantitative nature of NMR allows for 

the determination of both relative and absolute amounts 

of metabolites [11]. Nuclear magnetic resonance (NMR) 

is a vital technique for structure elucidation since it 

produces unique spectra for most isomers. 

Metabolic Profiling and NMR Metabolomics 

Foods, natural extracts, and biological samples have all 

been characterized by the use of nuclear magnetic 

resonance (NMR) analysis of complex mixtures, as is 

done in metabolomics. It is usual practise to use 1H 

NMR spectra from instruments like NOESY-1D (1D 

Nuclear Overhauser Effect Spectroscopy) to compile 

profiles of a great number of metabolites from a wide 

range of biological samples, including extracts of 

microbes from the gut microbiome, cells from mammals 

and plants, and clinical tissues and biofluids like plasma, 

urine, CSF, or faecal water. Using a 600 MHz NMR 

spectrometer, around 60 metabolites can be detected in 

untargeted 1 H NMR spectra of materials (such human 

urine) with minimal sample preparation required [12, 

13]. 1H NMR examination of serum and other blood 

matrices, as well as tiny molecules (metabolites), can 

detect different types of lipoproteins. For instance, as 

shown in Figure 2B, metabolites such as sugars, amino 

acids, organic acids, and other compounds can be 

identified through the examination of a human cell 
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system. These compounds are mostly involved in central 

carbon metabolism and related pathways. Although most 

metabolomics studies include dissolved biological 

samples, high resolution (HR) magic angle spinning 

(MAS)-NMR can be used to analyze intact tissues as 

well [14, 15]. Nevertheless, due to the minimal sample 

preparation, the fact that each molecule frequently 

causes several signals in the spectrum, and the fact that 

numerous metabolites can be detected, all 1 H NMR 

spectra acquired in metabolomics experience significant 

signal overlap. 

Interactions between Metabolite and Protein  

Enzymatic and allosteric events, which define and 

regulate metabolism, require interactions between 

metabolites and proteins. Although numerous 

approaches have been devised to investigate 

macromolecule interactions (such as protein-protein 

interactions), there is a lack of tools for conducting 

systematic evaluations of protein-metabolite 

interactions, and these tools are frequently restricted to 

hydrophobic metabolites [16]. Protein dynamics in vitro, 

such as conformational changes in response to ligand 

binding [17], can be studied using nuclear magnetic 

resonance (NMR) by tracking amino acid residues in the 

protein backbone.  

The NMR technique has shown to be an exceptional 

analytical tool for identifying and quantifying chemicals 

in complicated mixtures. Since NMR-active nuclei are 

present in all known mixtures, qNMR has found 

widespread application as a routine analytical method. 

Very few quantification procedures do not rely on 

standards, and qNMR is among them. Without the need 

for chemically identical standards, it can quantitatively 

assess mixtures of numerous compounds. For the 

purpose of quantitatively analyzing mixtures of many 

compounds, this review will cover both the theoretical 

and practical aspects of qNMR data gathering, spectrum 

processing, and signal deconvolution/integration. Also 

covered will be the steps involved in preparing the 

sample and how various sample circumstances impact 

the concentration assessment. Although 1H 1D qNMR is 

still the gold standard for quantitative study of complex 

mixtures of compounds, heteronuclear 1D and 2D 

qNMR methods are gaining popularity for application in 

this type of investigation. Subsequently, a few 

commonly employed quantitative NMR techniques are 

reviewed. Subsequently, qNMR is demonstrated in the 

contexts of metabolomics, natural products, 

pharmacological research, TCM, and food analysis. We 

conclude by looking ahead to the potential uses and 

advancements of Qnmr in the future. 

Understanding Protein-Metabolite Interactions 

Unveils Chemical Communication Principles  

A key component of cellular homeostasis is the 

regulation of numerous cellular processes through 

metabolicate-protein interactions. Even though 

metabolites make up the vast majority of cellular 

components, our comprehension of the interactome 

between metabolites and proteins is still in its infancy 

compared to that of protein-protein and protein-DNA 

interactomes. To systematically identify metabolite-

protein interactions in their original context, we offer a 

chemoproteomic approach [18, 19]. We showed that 

several of the newly discovered contacts had functional 

value, and the method succeeded in identifying a 

network of binding sites and interactions in Escherichia 

coli, both known and unknown. Thanks to our findings, 

new enzyme-substrate interactions and instances of 

metabolite-induced protein complex remodeling have 

been identified. There are 7,345 potential binding sites 

and 1,678 interactions in our metabolite-protein 

interactome. Our findings provide insight into the 

frequency and processes of enzyme promiscuity, 

demonstrate the structural and functional principles of 

chemical communication, and pave the way for the 

extraction of proteome-wide quantitative parameters of 

metabolite binding. 

Protein structures can be altered either locally or 

globally as a result of interactions between metabolite 

and protein [20]. We hypothesized that a universal 

readout of protein-small molecule interactions might be 

achieved by detecting ligand-induced structural 

modifications on a proteome-wide scale. Our approach, 

which we name LiP-small molecule mapping (LiP-

SMap), is based on earlier work and allows us to 

systematically find proteins that are differentially 

protease cleavage vulnerable when small molecules 

bound to proteome extracts.  

The LiP-SMap process involves exposing extracts to a 

small molecule of interest after proteomes have been 

extracted in a way that maintains the native protein 

structures. The broad-specificity protease proteinase K is 

used to perform restricted proteolysis on samples in 

order to produce fragments of proteins that are specific 

to their structures [21]. In order to create peptide 

mixtures suitable for bottom-up proteomic investigation, 

fragments are then digested using the sequence-specific 

protease trypsin. We use a label-free quantitative MS 
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method to compare the LiP patterns of proteomes 

processed with and without the small molecule, and then 

we use liquid-chromatography-coupled tandem MS to 

examine the peptides (Figure 1). A data-independent 

acquisition-based validation phase and a quantitatively 

unbiased shotgun proteomic step are components of our 

pipeline. 

 

Figure 1: LiP-SMap Approach Workflow: (A) 

Metabolites are added to or removed from whole-cell 

lysates that were isolated using native lysis conditions. 

Changes in local proteolytic sensitivity are brought 

about by metabolites binding to proteins. Proteinase K 

(PK) is used for a limited proteolysis step in native 

circumstances, followed by trypsin for complete 

digestion in denaturing conditions. This process 

produces peptides that may be measured by MS. Both 

the ligand-free version of the protein FixJ (PDB: 1D5W) 

and its bound form to aspartyl phosphate (PDB: 1DBW) 

are structurally informative peptides in the example. The 

peptides that are represented in red are conformotypic 

peptides, which are specific for either the bound or 

unbound conformation. A schematic showing FixJ 

peptides produced with and without aspartyl phosphate 

is shown in (B). Two peptides with non-tryptic ends 

(HT) vanish and the concentration of the accompanying 

fully tryptic peptide (FT) increases because binding 

precludes PK cleavage. (C) MS reveals the presence of 

the three peptides. 

Ligand-Detected Nuclear Magnetic Resonance 

Spectroscopy of Protein-Metabolite Interactions in 

Complex Metabolite Mixtures 

Many biological functions are controlled by protein-

metabolite interactions. Therefore, comprehending 

cellular regulation requires first finding such 

relationships. Unfortunately, there are currently no 

reliable ways to systematically map protein-metabolite 

interactions due to the noncovalent nature of the binding 

[22]. Only few groups of metabolites, including lipids, 

have been addressed by the few existing methods, most 

of which rely on mass spectrometry. Our study delves 

into this matter and demonstrates how ligand-detected 

nuclear magnetic resonance (NMR) spectroscopy, a tool 

commonly employed in drug development, can be 

utilized to methodically detect interactions between 

proteins and metabolites. To demonstrate the principle, 

we chose four proteins from different animals and 

bacteria (AroG, Eno, PfkA, and bovine serum albumin) 

and found metabolite binders in mixtures including up to 

33 different metabolites. Over the whole range of 

physiologically relevant Kd values, from low 

micromolar to low millimolar, ligand-detected NMR 

recorded all of the protein-metabolite interactions that 

have been reported thus far [23]. The promiscuous 

binding of citrate, AMP, and ATP—negatively charged 

metabolites—and the binding of aromatic amino acids to 

AroG protein were among the many new interactions 

that we discovered. We evaluated the practical 

importance of these new interactions with AroG using in 

vitro enzyme activity tests and found that l-tryptophan, l-

tyrosine, and l-histidine are new inhibitors of AroG 

activity. Therefore, we infer that ligand-detected NMR 

works well for the methodical discovery of protein-

metabolite interactions that are important for biological 

function. 

Escherichia coli's core metabolism and the protein-

metabolite connections 

The majority of what we know about the connections 

between metabolism and proteins comes from empirical 

in vitro investigations, yet these interactions govern 

practically every biological process. The initial 

comprehensive investigation into the interplay between 

polar metabolites and water-soluble proteins in a 

complete biological subnetwork is presented here [23]. 

We decided to examine the central metabolism of the 

well-studied bacterium Escherichia coli in order to gauge 

the extent of our existing knowledge. We tested 29 

enzymes for binding events with 55 intracellular 
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metabolites using ligand-detected NMR. We identified 

98 interactions, with purine nucleotides making up one 

third of them, when we concentrated on high-confidence 

interactions with a false-positive rate of 5%. Half of the 

metabolites we tested did not interact with any enzyme. 

However, several enzymes interacted with as many as 

eleven metabolites, and only five of them showed no 

evidence of metabolite binding at all. Due to their 

limited chemical resemblance to the reactants of their 

target, approximately 40% of the interacting metabolites 

were projected to be allosteric effectors. In vitro tests 

validated new regulatory roles for five out of eight 

interactions, including the regulation of the first pentose 

phosphate pathway enzyme by ATP and GTP. 

But instead of watching the protein, a series of ligand-

observed NMR tests can be employed to track the 

binding event via the ligand. Examples of nuclear 

magnetic resonance (NMR) techniques used to observe 

ligand binding to non-isotopically labelled proteins 

include saturation transfer difference (STD) [24], water-

ligand observation with gradient spectroscopy 

(WaterLOGSY), time constant of spin-lattice relaxation 

in rotating frame (T1rho), and CPMG. The main 

application of ligand-observed NMR in drug discovery 

has been high throughput fragment screening. 

There are certain requirements for ligand-observed NMR 

techniques. The ligand is usually given to a large protein 

(>30 kDa) in excess (10-20 times the protein quantity), 

and the interactions are usually weak, with dissociation 

constants (KD) ranging from 1 μM to 10 mM. Proton 

signal widening or disappearance [25] from the spectrum 

(Figure 5) indicates that the signal undergoes a 

substantial relaxation upon binding, which occurs during 

the quick exchange between the ligand and protein. 

Gaining binding information from ligand signals is 

possible through NOEs (STD and water-mediated 

NOEs, WaterLOSGY) by analyzing bound and unbound 

states. 

The ligand interaction can be epitope mapped and KD 

can be calculated. Further evaluation of ligand 

competition in ligand combinations is possible as well 

[26]. E. coli's core carbon metabolism proteins are one 

example of an endogenous metabolite-protein interaction 

that has been systematically identified using ligand-

observed nuclear magnetic resonance (NMR).  

We tested 29 isolated metabolic enzymes with solutions 

containing up to 55 different metabolites. With this 

method, 76 new interactions involving endogenous 

metabolites and enzymes involved in central metabolism 

were discovered [27] The availability of pure proteins 

(or enriched protein cell suspensions) with a 

predetermined number of metabolites is crucial to this 

type of technique, even though it is fast to set up from an 

NMR acquisition standpoint. The interaction of small 

molecules with macromolecules in biological settings is 

still an area that is being studied. To illustrate the point, 

the binding mechanism of ligands to intracellular 

proteins in living bacteria and cancer cells has been 

ascertained using whole-cell STD measurements. 

Chemometrics as a tool for detecting biomarkers  

An essential part of analyzing NMR metabolomics data 

is multivariate statistical approaches.[28] in When it 

comes to diseases, environmental stresses, poor diet, or 

pollutants, multivariate statistics make it easy to see how 

the metabolome changes on a global scale. We capture 

the full impact on the system from the external stimuli, 

not just a few metabolites or certain metabolic pathways. 

The chemical shifts and intensities that make up a 1D 1H 

NMR spectrum—a complicated multivariable data set—

can reach 32K. The NMR data set is made more 

comprehensible and easier to understand by employing 

multivariate statistical methods. Usually, a scoring plot 

is used to compress the NMR spectrum to a single data 

point. Multivariate statistical methods have been used to 

examine both 1D and 2D nuclear magnetic resonance 

spectra.[29] Supervised and unsupervised multivariate 

statistical approaches exist. In supervised learning, 

example classes are introduced, but in unsupervised 

learning, intrinsic data variances are the only basis. 

When it comes to NMR metabolomics data, one popular 

unsupervised method is principal component analysis 

(PCA). The supervised method known as Orthogonal 

Partial Least Square Discriminant Analysis (OPLS-DA) 

has lately gained traction as a means to decipher NMR 

spectra in order to identify biomarkers.the 113th The 

NMR metabolomics procedure cannot proceed without 

first pre-processing the data. Data reduction (binning), 

scaling, and the elimination of solvent areas and noise 

are all part of the pre-processing of the NMR spectrum. 

After the 1D 1H NMR spectrum has been baseline 

corrected and phase corrected to create pure absorption 

line shapes, the spectrum is either intelligently bucketed 

(ACD Labs, Toronto, Canada) that uses variable bin 

sizes to prevent peaks from splitting between bins or 

uniformly binned with a chemical shift range of 0.01 to 

0.04 ppm [30, 31].The number 115 Each bin's numerical 

value represents the integral of its corresponding spectral 

region. The unavoidable small and random variations in 

chemical shifts, phasing, peak form, baseline, etc., in 
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replicate biological samples are reduced to a minimum 

by binning NMR spectra. Similarly, NMR spectra 

acquired from a diverse range of biological substances, 

including biofluids, exhibit substantial and intrinsic 

heterogeneity in terms of signal-to-noise ratio and 

overall quality. It is both unrealistic and unattainable to 

anticipate consistency in biofluid samples collected from 

various animals, tissues, or patients. Consequently, in 

order to remove or reduce signal-to-noise variability 

caused by overall volume or concentration changes 

between samples, the NMR spectra must be normalized 

[33]. 

To find metabolite biomarkers, we need to isolate the 

latent variables that differentiate between classes 

(healthy vs. illness, for example). While principal 

component analysis (PCA) can reveal the most 

significant changes in the NMR data, the underlying 

latent variables (the relationship between classes) might 

not always lie along the most significant changes. When 

looking for biomarkers for metabolites [34, 35], OPLS-

DA is the way to go. One regression model that takes 

into account the relationship between dependent 

variables and class information in multivariate data is 

OPLS-DA. With OPLS-DA, one component serves as 

the class predictor, while the remaining components 

represent variations perpendicular to it. To rephrase, the 

orthogonal components explain the separation within 

classes, whereas the predictive component explains the 

split between classes. OPLS-DA lessens distinction 

inside classes and places an emphasis on separations 

between them. Consequently, compared to PCA, OPLS-

DA scores plots will show more distinct clusters. 

Transforming PCA data into OPLS-DA is as easy as 

adding a class discriminating value as a Y direction 

vector. One set of data is usually called the control (Y = 

0) and the other sets are called the treated (Y = 1) in a 

two-class system. Two metrics used to evaluate model 

quality in PCA and OPLS-DA are the quality evaluation 

score (Q2) and the measure of goodness of fit (R2). 

Similar in concept to simple linear regressions, a 

successful model has R2 values ≥ 0.5 (ranging from 0 to 

1). While a value of ≥ 0.4 is normal for biological 

models, an optimal value for Q2 is one. Since over-

fitting the data is a typical worry, it is necessary to 

validate the model before using OPLS-DA, a supervised 

technique [36]. When validating OPLS-DA models, the 

leaveone-out strategy is frequently employed. This 

method involves omitting a portion of the NMR spectra 

in order to compute a model that can subsequently 

forecast the data that was omitted.  When comparing the 

original data with the anticipated data. 

Analysis of NMR data and processing  

In order to process, calibrate, and compute the difference 

spectra, spectra were run through TopSpin 3.2 (Bruker) 

with the use of a custom-built Python program 

(github.com/systemsnmr/metabolite‐interactions). 

Minimizing subtraction artifacts in the final difference 

spectra required spectra to be calibrated to the DSS 

reference signal. Each sample's two short-delay T1rho 

duplicate spectra were compared to serve as an indicator 

of experimental reproducibility and a quality filter for 

metabolite stability [37, 38]. Metabolite signals that 

displayed a discordance of greater than 5% between 

these two spectra were deemed unstable when exposed 

to the specified protein and were subsequently omitted 

from the comprehensive analysis. Also, we didn't 

include metabolite peaks that seemed to get stronger 

when the protein was there. The peaks that displayed a 

significantly negative intensity (less than −0.05) after 

removing the intensities of the combined short-delay 

spectra of the protein-metabolite mixtures 

(T1rho10ms_PM) and free protein (T1rho10ms_P) from 

the free metabolite reference spectra (T1rho10ms_M) 

were named as follows: [T1rho10ms_M − 

(T1rho10ms_PM − T1rho10ms_P) < −0.05]. 

Recent applications of NMR for biomarker detection. In 

the United States, the 5-year survival rate for lung cancer 

is a dismal 15%, while in Europe it drops to 10%. 

Unfortunately, present diagnostic procedures are 

insufficient, even though early diagnosis is crucial to 

improve patient survival [39, 40]. To achieve a 

consistent pH of 7.00 ± 0.02 in a 540 μL urine sample, 

60 μL of 1.5 M phosphate buffer (KH2PO4) containing 

0.1% TMSP-d4 was added to create a 600 μL NMR 

sample. There was a clear metabolic difference between 

healthy people and lung cancer patients, according to the 

1D 1H NMR spectra that were generated (Figure 7). 

Multivariate statistical analysis using principal 

component analysis (PCA), partial least squares (PLS), 

and orthogonal principal component analysis (OPLS-

DA) further separated the two groups (Figure 8). The 

only method that produced a distinct distinction was 

OPLS-DA. The effects of gender, age, and smoking on 

the clustering pattern of 2D scores were also investigated 

[41-44]. The investigation did not find any substantial 

impact from any of these parameters, which is 

interesting. Metabolites that were responsible for class 

separation were identified using the relevant OPLS-DA 
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loading plot. Lung cancer patients and healthy 

individuals differed significantly (P < 0.01) in hippurate, 

trigonelline, β-hydroxyisovalerate, α-

hydroxyisobutyrate, N-acetylglutamine, and 

creatinine.The number 130 Investigations into system-

wide processes like transformation, progression, 

proliferation, and metastasis have also made substantial 

use of NMR metabolomics in cancer cell line pathology 

studies.[45] The discovery of novel biomarkers and 

treatments might be the result of this endeavor. An 

androgen-dependent prostate cancer cell line (LnCAP) 

was analyzed metabolomically utilizing nuclear 

magnetic resonance and mass spectrometry, as described 

by MacKinnon et al. (2012) Methyltrienolone, an 

androgen receptor agonist, induced a metabolic signature 

typical of aggressive prostate cancer in LnCAP cells. In 

particular, certain changes were noted in the levels of 

myo-inositol, glutathione, amino acids, methionine, 

phosphocholine, and the ratio of phosphocholine to 

glycophosphocholine. Clinical treatments could be 

guided by these possible biomarkers to prevent the 

unlucky induction of an aggressive and incurable form 

of prostate cancer by prematurely terminating androgen 

ablation therapy. 

In industrialized nations like the United States, 

cardiovascular diseases (CVD) rank high among the top 

killers. One key part of a preventative medical plan is 

predicting the risk of cardiovascular illnesses. In a 

research of healthy adults, Bernini et al. (2011) used 

nuclear magnetic resonance (NMR) metabolomics to 

find biomarkers linked to cardiovascular disease risk. 

Analyzing 864 plasma samples thoroughly yielded a 

CVD risk estimate that was comparable to those of 

conventional clinical practices. In essence, NMR-

determined metabolome changes were associated with 

conventional CVD risk markers such elevated 

cholesterol, triglycerides, LDL, and HDL. Along with 

these well-known risk factors for CVD, other metabolite 

markers such 3-hydroxybutyrate, αketoglutarate, 

threonine, and dimethylglycine were also discovered. To 

produce the NMR samples, 300 μL of sodium phosphate 

buffer and 300 μL of plasma sample were mixed. All of 

the plasma samples were analyzed using standard 1D 1H 

NMR spectra, CPMG diffusion edited spectra, and 1D-

NOESY spectra. Obtaining an accurate analysis of 

known CVD risk factor metabolites and establishing a 

good association between routine clinical analysis and 

the NMR data were the key goals of this broad series of 

NMR investigations. Additionally, a limited group of 

metabolites that are extremely dependable (P-value < 

0.0001) in predicting the risk of cardiovascular disease 

was the primary focus of the statistical analysis [46]. 

Interconnected are the high risk and low risk pathways, 

where a low risk individual's metabolome is pushed 

toward HDL, α-ketoglutarate, dimethylglycine, and 3-

hydroxybutyrate. The opposite is true for high-risk 

individuals, whose metabolic pathways are altered to 

prioritize LDL, threonine, and acetoacetate. 

Conclusion  

Biomarkers that can help in the diagnosis and treatment 

of a wide range of human disorders have been greatly 

advanced by NMR metabolomics. Biomarkers for a wide 

range of diseases, including cancer, neurological 

disorders, genetic disorders, and infectious diseases, 

have been found with the help of nuclear magnetic 

resonance (NMR). Thanks to its robustness, versatility, 

and ease of application, NMR metabolomics is 

attractive, and its simplicity in sample preparation is a 

big part of it. Regular one-dimensional 1H NMR 

investigations can rapidly provide global metabolomic 

alterations. Combining two-dimensional nuclear 

magnetic resonance experiments with chemometrics 

methods, such as S plots and loading plots, might 

identify specific metabolites that are associated with a 

disease and may serve as biomarkers. The biological 

interpretation of NMR metabolomics data is further 

supported by statistical analysis, which includes tree 

diagrams, bootstrap numbers, and T2 hoteling. 

References 

1. Backus, K.M., Correia, B.E., Lum, K.M., Forli, 

S., Horning, B.D., Gonza´ lez- Pa´ ez, G.E., 

Chatterjee, S., Lanning, B.R., Teijaro, J.R., 

Olson, A.J., et al. (2016). Proteome-wide 

covalent ligand discovery in native biological 

systems. Nature 534, 570–574.  

2. Barthelme, D., Dinkelaker, S., Albers, S.-V., 

Londei, P., Ermler, U., and Tampe´ , R. (2011). 

Ribosome recycling depends on a mechanistic 

link between the FeS cluster domain and a 

conformational switch of the twin-ATPase 

ABCE1. Proc Natl Acad Sci U S A 108, 3228–

3233.  

3. Castello, A., Fischer, B., Eichelbaum, K., Horos, 

R., Beckmann, B.M., Strein, C., Davey, N.E., 

Humphreys, D.T., Preiss, T., Steinmetz, L.M., et 

al. (2012). In- sights into RNA biology from an 

atlas of mammalian mRNA-binding proteins. 

Cell 149, 1393–1406.  



 CCME 2 (5), 79-88 (2024)                                                                                   VISION PUBLISHER|86 

4. Changeux, J.-P., and Christopoulos, A. (2016). 

Allosteric modulation as a uni- fying mechanism 

for receptor function and regulation. Cell 166, 

1084–1102. Christopoulos, A. (2002). Allosteric 

binding sites on cell-surface receptors: novel 

targets for drug discovery. Nat. Rev. Drug 

Discov. 1, 198–210. Chubukov, V., Gerosa, L., 

Kochanowski, K., and Sauer, U. (2014). 

Coordination of microbial metabolism. Nat. 

Rev. Microbiol. 12, 327–340.  

5. Diether, M., and Sauer, U. (2017). Towards 

detecting regulatory protein- metabolite 

interactions. Curr. Opin. Microbiol. 39, 16–23.  

6. Feng, Y., De Franceschi, G., Kahraman, A., 

Soste, M., Melnik, A., Boersema, P.J., de 

Laureto, P.P., Nikolaev, Y., Oliveira, A.P., and 

Picotti, P. (2014). Global analysis of protein 

structural changes in complex proteomes. Nat. 

Biotechnol. 32, 1036–1044. Fischer, E.S., Park, 

E., Eck, M.J., and Thoma¨ , N.H. (2016). 

SPLINTS: Small- molecule protein ligand 

interface stabilizers. Curr. Opin. Struct. Biol. 37, 

115–122.  

7. Gallego, O., Betts, M.J., Gvozdenovic-Jeremic, 

J., Maeda, K., Matetzki, C., Aguilar-Gurrieri, C., 

Beltran-Alvarez, P., Bonn, S., Ferna´ ndez-

Tornero, C., Jen- sen, L.J., et al. (2010). A 

systematic screen for protein-lipid interactions in 

Saccharomyces cerevisiae. Mol. Syst. Biol. 6, 

430.  

8. Gerosa, L., and Sauer, U. (2011). Regulation and 

control of metabolic fluxes in microbes. Curr. 

Opin. Biotechnol. 22, 566–575.  

9. Hein, M.Y., Hubner, N.C., Poser, I., Cox, J., 

Nagaraj, N., Toyoda, Y., Gak, I.A., 

Weisswange, I., Mansfeld, J., Buchholz, F., et al. 

(2015). A human interactome in three 

quantitative dimensions organized by 

stoichiometries and abun- dances. Cell 163, 

712–723.  

10. Jarosz, D.F., Brown, J.C.S., Walker, G.A., 

Datta, M.S., Ung, W.L., Lancaster, A.K., Rotem, 

A., Chang, A., Newby, G.A., Weitz, D.A., et al. 

(2014). Cross- kingdom chemical 

communication drives a heritable, mutually 

beneficial prion-based transformation of 

metabolism. Cell 158, 1083–1093.  

11. Keseler, I.M., Mackie, A., Peralta-Gil, M., 

Santos-Zavaleta, A., Gama-Castro, S., 

Bonavides-Martı´nez, C., Fulcher, C., Huerta, 

A.M., Kothari, A., Krumme- nacker, M., et al. 

(2013). EcoCyc: Fusing model organism 

databases with sys- tems biology. Nucleic Acids 

Res. 41, D605–D612.  

12. Kirkwood, K.J., Ahmad, Y., Larance, M., and 

Lamond, A.I. (2013). Characterization of native 

protein complexes and protein isoform variation 

using size- fractionation-based quantitative 

proteomics. Mol. Cell. Proteomics 12, 3851–

3873.  

13. Li, X., Gianoulis, T.A., Yip, K.Y., Gerstein, M., 

and Snyder, M. (2010). Extensive in vivo 

metabolite-protein interactions revealed by 

large-scale systematic an- alyses. Cell 143, 639–

650.  

14. Lindsley, J.E., and Rutter, J. (2006). Whence 

cometh the allosterome? Proc. Natl. Acad. Sci. 

USA 103, 10533–10535.  

15. Lomenick, B., Hao, R., Jonai, N., Chin, R.M., 

Aghajan, M., Warburton, S., Wang, J., Wu, R.P., 

Gomez, F., Loo, J.A., et al. (2009). Target 

identification using drug affinity responsive 

target stability (DARTS). Proc. Natl. Acad. Sci. 

USA 106, 21984–21989.  

16. Marolda, C.L., and Valvano, M.A. (1996). The 

GalF protein of Escherichia coli is not a UDP-

glucose pyrophosphorylase but interacts with the 

GalU protein possibly to regulate cellular levels 

of UDP-glucose. Mol. Microbiol. 22, 827–840.  

17. Milo, R. (2013). What is the total number of 

protein molecules per cell volume? A call to 

rethink some published values. BioEssays 35, 

1050–1055.  

18. Nam, H., Lewis, N.E., Lerman, J.A., Lee, D.-H., 

Chang, R.L., Kim, D., and Pals- son, B.O. 

(2012). Network context and selection in the 

evolution to enzyme specificity. Science 337, 

1101–1104.  

19. Fiehn O Metabolomics – the link between 

genotypes and phenotypes. Plant Mol. Biol. 

2002, 48, (1–2), 155–171  # 

20. Badano JL; Katsanis N Beyond Mendel: an 

evolving view of human genetic disease 



 CCME 2 (5), 79-88 (2024)                                                                                   VISION PUBLISHER|87 

transmission. Nat. Rev. Genet, 2002, 3, (10), 

779–789.   

21. Rebbeck TR; Domchek SM Variation in breast 

cancer risk in BRCA1 and BRCA2 mutation 

carriers. Breast Cancer Res, 2008, 10, (108),   

22. Mavaddat N; Antoniou AC; Easton DF; Garcia-

Closas M Genetic susceptibility to breast cancer. 

Mol. Oncol, 2010, 4, (3), 174–191.   

23. Nathanson KL; Domchek SM Therapeutic 

approaches for women predisposed to breast 

cancer. Annu. Rev. Med, 2011, 62, 295–306.   

24. Howard AF; Balneaves LG; Bottorff JL; Rodney 

P Preserving the self: the process of decision 

making about hereditary breast cancer and 

ovarian cancer risk reduction. Qual Health Res, 

2011, 21, (4), 502–519.   

25. Alberio T; Fasano M Proteomics in Parkinson’s 

disease: An unbiased approach towards 

peripheral biomarkers and new therapies. J. 

Biotechnol, 2011, 156, (4), 325–337.   

26. Denman B; Goodman SR Emerging and 

neglected tropical diseases: translational 

application of proteomics. Exp. Biol. Med, 2011, 

236, (8), 972–976.  

27. Hnash S Progress in mining the human 

proteome for disease applications. OMICS, 

2011, 15, (3), 133–139.   

28. Wang J-Z; Grundke-Iqbal I; Iqbal K 

Glycosylation of microtubule-associated protein 

tau: An abnormal posttranslational modification 

in Alzheimer’s disease. Nature, 1996, 2, (8), 

871–875.   

29. Vucic D; Dixit VM; Wertz IE Ubiquitylation in 

apoptosis: a post-translational modification at 

the edge of life and death. Nat. Rev. Mol. Cell 

Biol, 2011, 12, (7), 439–452  

30. Ehrnhoefer DE; Sutton L; Hayden MR Small 

Changes, Big Impact: Posttranslational 

Modifications and Function of Huntingtin in 

Huntington Disease. The Neuroscientist, 2011, 

17, (5), 475–492.  

31. Lu, W.; Su, X.; Klein, M.S.; Lewis, I.A.; Fiehn, 

O.; Rabinowitz, J.D. Metabolite Measurement: 

Pitfalls to Avoid and Practices to Follow. Annu. 

Rev. Biochem. 2017, 86, 277–304. [CrossRef]  # 

32. Vignoli, A.; Ghini, V.; Meoni, G.; Licari, C.; 

Takis, P.G.; Tenori, L.; Turano, P.; Luchinat, C. 

High-Throughput Metabolomics by 1D NMR. 

Angew. Chem. Int. Ed. Engl. 2019, 58, 968–

994. [CrossRef]    

33. Sumner, L.W.; Amberg, A.; Barrett, D. 

Proposed minimum reporting standards for 

chemical analysis Chemical Analysis Working 

Group (CAWG) Metabolomics Standards 

Initiative (MSI). Metabolomics 2007, 3, 211–

221.   

34. Members, M.S.I.B.; Sansone, S.A.; Fan, T.; The 

metabolomics standards initiative. Nat. 

Biotechnol. 2007, 25, 846–848. [CrossRef]  

35. Spicer, R.A.; Salek, R.; Steinbeck, C. 

Compliance with minimum information 

guidelines in public metabolomics repositories. 

Sci. Data 2017, 4, 170137.  

36.  R Development Core Team. R: A Language and 

Environment for Statistical Computing; R 

Development Core Team: Vienna,Austria, 2020.  

37.  Kumar, U.; Sharma, S.; Durgappa, M. Serum 

Metabolic Disturbances Associated with Acute-

on-chronic Liver Failure in Patients with 

Underlying Alcoholic Liver Diseases: An 

Elaborative NMR-based Metabolomics Study. J. 

Pharm. Bioallied Sci. 2021, 13, 276–282. 

[CrossRef]  

38. Rocca, M.S.; Vignoli, A.; Tenori, L.; Ghezzi, 

M.; De Rocco Ponce, M.; Vatsellas, G.; Thanos, 

D.; Padrini, R.; Foresta, C.; De Toni, L. 

Evaluation of Serum/Urine Genomic and 

Metabolomic Profiles to Improve the Adherence 

to Sildenafil Therapy in Patients with Erectile 

Dysfunction. Front. Pharmacol. 2020, 11, 

602369. [CrossRef]  

39. Izquierdo-Garcia, J.L.; Comella-Del-Barrio, P. 

Discovery and validation of an NMR-based 

metabolomic profile in urine as TB biomarker. 

Sci. Rep. 2020, 10, 22317. 

40. Wang TJ; Larson MG; Vasan RS; Cheng 

S.Metabolite profiles and the risk of developing 

diabetes. Nat. Med, 2011, 17, (4), 448–453.   

41. Viant MR Metabolomics of aquatic organisms: 

the new ‘omics’ on the block. Mar Ecol Prog 

Ser, 2007, 332, 301–306  



 CCME 2 (5), 79-88 (2024)                                                                                   VISION PUBLISHER|88 

42. Bundy JG; Davey MP; Viant MR Environmental 

metabolomics: a critical review and future 

perspectives. Metabolomics, 2008, 5, (1), 3–21.   

43. Vinayavekhin N; Homan EA; Saghatelian A 

Exploring Disease through Metabolomics. ACS 

Chem. Biol, 2010, 5, (1), 91–103.   

44. Gowda G. n; Zhang S; Gu H; Asiago V; 

Shanaiah N; Raftery D Metabolomics-based 

methods for early disease diagnostics. Expert 

Rev. Mol. Diagn, 2008, 8, (5), 617–633.   

45. Gu H; Chen H; Pan Z; Jackson AU; Talaty N; 

Xi B; Kissinger C; Duda C; Mann D; Raftery D; 

Cooks RG Monitoring Diet Effects via Biofluids 

and Their Implications for Metabolomics 

Studies. Anal. Chem, 2007, 79, 89–97.   

46. Olszewski KL; Morrisey JM; Wilinski D; Burns 

JM; Vaidya AB; Rabinowitz JD; Llinas M 

Hostparasite interactions revealed by 

Plasmodium falciparum metabolomics. Cell 

Host Microbe, 2009, 5, 191–199

 

 

 


